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The hydrodynamic equations describing the fluid motion in a narrow cell and in a 
porous medium become identical in the limit of 'infinite height-to-width ratio (Hele- 
Shaw limit) in the first and zero permeability in the second case. The properties of 
the convection onset are, however, indistinguishable from an experimental point of 
view away from these limits. For realistic.(rigid, impermeable) boundary conditions 
the critical Rayleigh number, the critical wavenumber and in the case of a Hopf 
bifurcation additionally the critical frequency are derived in both cases for a binary 
fluid mixture. For the porous medium the assumption of zero permeability is usually 
a very good approximation. The dritical values for the porous medium are compared 
to those of the narrow cell for different height-to-width ratios and the connection 
with experiments is discussed. 

1. Introduction 
Hydrodynamic instabilities like Rayleigh-B6nard convection play an important 

role in the investigation of pattern formation in non-equilibrium systems and in 
various bifurcation problems. Convection in a horizontal layer of a binary fluid 
heated from below has attracted considerable interest during the last few years. A 
binary fluid is a mixture of two (miscible) fluids, e.g. water-alcohol or *He4He. 
Owing to the two-component nature of the fluid, the Soret effect leads to an 
additional control parameter besides the Rayleigh number R, namely the separation 
ratio Y, which measures the stabilizing (!P < 0), or destabilizing (Y > 0) effect of 
concentration gradients. Depending on Y, above a critical temperature difference, 
convection may set in as a stationary roll pattern or via a Hopf bifurcation leading to 
travelling waves (for an overview see e.g. Gershuni & Zhukhovitskii 1976 or Platten 
& Legros 1983). Early studies by Nield (.1967), Hurle & Jakeman (1971), Legros et al. 
(1975), Chock & Li (1975) and others were followed by more specialized work during 
the last few years. The bifurcation structure, the onset values and the nature of the 
various convective patterns have been investigated in great detail with high 
experimental precision (Lee, Lucas & Tyler 1983; Walden et al. 1985; Rehberg & 
Ahlers 1985; Moses & Steinberg 1986; Sullivan & Ahlers 1988; Lhost & Platten 1988, 
1989; Bensimon et aE. 1990; Kolodner, Glazier & Williams 1990; Schopf & Rehberg 
1992) and theoretically (Brand & Steinberg 1983; Knobloch 1986; Linz & Lucke 
1987; Knobloch & Moore 1988; Cross & Kim 1988; Schopf & Zimmermann 1989; 
Barten et al. 1989). 

Of special interest are the features near the convection onset: the critical 
temperature difference AT,, the critical wavenumber k, and in the case of a Hopf 
bifurcation the critical frequency w;. These values have been calculated for binary 
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fluid mixtures in a laterally infinitely extended horizontal layer (in this paper 
referred to as ‘bulk binary mixtures ’) with realistic (rigid and impermeable) 
boundary conditions first by Legros et al. (1975) and Chock & Li (1975). Later they 
were discussed in more detail by Knobloch & Moore (1988) and Cross & Kim (1988). 
For porous media, which are very important for various applications (e.g. geophysical 
problems) (Dullien 1979), much was done many years ago for the case of a simple 
fluid (Lapwood 1948; Elder 1967; Westbrook 1969; Kvernvold & Tyvand 1979). For 
binary mixtures only idealized boundary conditions have been used up to now, where 
the results can be given analytically (Brand & Steinberg 1983; Knobloch 1986). 
Although ones does not expect large changes for realistic boundary conditions, there 
are some qualitative differences near the codimension-2 point and in the wavenumber 
behaviour for positive Y. (This is analogous to bulk binary mixtures as discussed by 
Knobloch & Moore (1988) and Cross & Kim (1988).) Furthermore it is important for 
the experimentalist to know the correct critical numbers. One purpose of this paper 
is to calculate these values for a laterally infinitely extended porous medium with 
rigid, impermeable boundaries at top and bottom. 

Another problem of great interest is the convection onset in a narrow channel 
(‘Hele-Shaw cell’), which has also been investigated for simple fluids (Hartline & 
Lister 1977; Frick & Clever 1980). With the term ‘narrow channel’ or ‘narrow cell’ 
a box with height d and width b is meant, where the height-to-width ratio y = d/b 
is of order one or larger. Such apparatuses, both of longitudinal1 and annular shape, 
are often used in experiments (Bensimon et al. 1990; Kolodner et al. 1990; Schopf & 
Rehberg 1992), because they allow the investigation of two-dimensional roll patterns 
(with the roll axes parallel to the narrow dimension), which can be described very 
successfully by using one-dimensional Ginzburg-Landau equations (Bretherton & 
Spiegel 1983; Cross 1988; Thud & Fauve 1988; van Saarlos & Hohenberg 1990; 
Schopf & Kramer 1991). This two-dimensional character persists up to high 
convection amplitudes and three-dimensional instabilities are avoided. For in- 
oreasing y it  is no longer possible to compare the onset Rayleigh number to the one 
of bulk mixtures, because the friction due to the sidewalls becomes more and more 
important, leading to higher A%. The critical properties of a binary fluid mixture in 
such a convection channel of longitudinally infinite extent are calculated in this 
paper for realistic boundary conditions at top and bottom and rigid, impermeable, 
adiabatic sidewalls. 

For both problems considered here it is useful to introduce new Rayleigh numbers 
Rpor and RHs which depend only linearly on the box height d (rather than Rb a d3 for 
bulk mixtures) and which contain a term describing the special properties. For the 
porous medium this is the permeability K and for the narrow cell an effective 
permeability KHS, which characterizes the geometry (Hartline & Lister 1977 ; Brand 
& Steinberg 1983). For small K/d2 and large y (Hele-Shaw limit) the equations for 
both cases become identical. K is determined by the pore structure (Dullien 1979) 
and usually 0 < K / d 2  4 1, so the first condition is fulfilled in most cases. It is 
interesting to know for which y a porous medium can adequately be modelled by a 
narrow convection channel, because very often such boxes were used in laboratory 
experiments to simulate the fluid flow in a porous medium (see e.g. Elder 1967; 
Hartline & Lister 1977). This is due to the fact that the observation of flow 
phenomena within porous materials is difficult. 

In  $2 the basic equations for both the porous medium and the narrow cell together 
with the boundary conditions are presented. The equations for the deviations from 
the heat conduction state are given and the analogy between the two cases is 
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discussed. The different methods of solution for the linear stability analysis are 
outlined in 53. In  $4 the results for the stationary and the oscillatory instabilities are 
given and compared for both geometries. The situation near the codimension-2 point 
is briefly discussed. Moreover, the results are compared with recent experiments. 
Section 5 is a short summary. 

2. Basic equations and boundary conditions 

2.1.1. Pore structure 
To characterize a porous medium in physical terms various parameters can be 

introduced. The macroscopic parameters are determined by the pore structure of the 
medium, which is in general not known in detail. Two of these parameters, the 
porosity and the permeability, will enter the hydrodynamic equations (Dullien 1979). 

The porosity E (< 1, usually of order one) is defined as the ratio of the void space 
(that can be filled by fluid) and the bulk volume of the medium. The permeability K 
is a measure for the permeation of a Newtonian fluid through the porous medium and 
will in general be very small compared to d2. Here d describes the macroscopic 
extension of the medium, in our case it is the height of the convection cell (see figure 
1 ) .  Connections between E and K can be formulated depending on the pore structure. 
If the medium consists of particles having more or less spherical shapes (see figure l),  
the Kozeny formula can be used (Dullien 1979) : 

2.1. Porous medium 

e3a2 
K =  

1 50( 1 - E ) ~  ’ 

with a being the mean diameter of the particles. One necessary condition for a porous 
medium is a g d,  therefore K / d 2  g 1 is always fulfilled. (The assumption of spherical 
particles is not a real restriction, because analogous formulae for other compositions 
of the medium lead to very small K / d 2 ,  too (Dullien 1979).) 

2.1.2. Hydrodynamic equations 
The equations describing the fluid behaviour are influenced by the porous 

character of the medium and are slightly changed compared to those of bulk 
mixtures. More detailed statements concerning the controversial discussions about 
these equations are given by Dullien (1979) and Brand & Steinberg (1983). For the 
velocity u(r, t ) ,  the temperature T(r,  t ) ,  the concentration N(r ,  t )  and the pressure 
p(r ,  t ) ,  we have in Boussinesq approximation (Gershuni & Zhukhovitskii 1976 ; 
Brand & Steinberg 1983):t 

v*v = 0, ( 2 . 2 ~ )  

(2.2b) i3T -+ ( v - V )  T = K V ~ T ,  
at 

( 2 .T) 
aiv - + ( u . V ) N = D  V2N+-V , 
at 

1 a v  1 V P  --+ a’uJ’(lul) = - -Vp -- u+-g. 
at Po K Po 

(2.24 

(2 .24  

t Because the Dufour effect is negligible in fluid mixtures (Gershuni & Zhukhovitskii 1976; 
Platten & Legros 1983), the corresponding term is never included in this paper. 
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FIGURE 1. The model system for the porous medium consists of ‘nearly’ spherical particles with 
mean diameter a. They are placed between two horizontal boundaries with infinite extent in the 
(z,y)-direction. These plates are impermeable to mass flow and perfect heat conductors. The 
temperature at the top plate is T, and at the bottom plate T, + AT with AT > 0. 

Equation ( 2 . 2 ~ )  is the continuity equation for an incompressible fluid. The heat 
equation (2.2b) is an average over both the porous medium and the fluid, because 
heat is transported by the fluid as well as by the medium. This leads to a mean 
thermal diffusivity K = [( 1 -e)ASo1 + eh,,,]/(p c )liq (here h is the thermal conductivity 
and c p  the heat capacity, see Brand & Steinberg 1983). In equation ( 2 . 2 ~ )  for the 
concentration, D is the solutal diffusivity and k, is the Soret coefficient, which 
measures the cross coupling between temperature gradients and mass fluxes and can 
have either plus or minus sign. 

The Navier-Stokes equation ( 2 . 2 4  contains the friction term - ( v / K )  u, according 
to Darcy’s law with the kinematic viscosity v (Dullien 1979). The special form of the 
nonlinearity (F(0) = 0) will not be discussed here, because in what follows only linear 
properties are considered (for details, see Irmay 1958; Dullien 1979; Brand & 
Steinberg 1983; Knobloch 1986). The gravity field g is parallel to the z-direction: 
g = -ge,. For the density p,  a linearized state equation is used (Gershuni & 
Zhukhovitskii 1976) : 

P P  

P = POP -4T-T,)  +P(N-No)I, (2.3) 

with a = - (l/po) (ap/aT) and p = (l/po) (ap/iW).  
The system and the coordinate axes are sketched in figure I .  In  the horizontal 

dimensions (2, y), the medium is of infinite extent and the height is d. Owing to the 
modified friction term, the system (2 .2a)-(2.2d)  is of lower order than usual bulk- 
mixture equations, so only three - rather than four - conditions apply at the upper 
and the lower boundaries : 

I &V k aT 
v, = 0 = -+x- a t  x = O,d,  

a2 T, a2 

I T = + AT a t  z = 0, 

T =  To a t z = d .  

(2.4) 

It is now not possible to distinguish between free and rigid boundaries for the 
velocity field, and the only change to free boundary conditions, applied by Brand & 
Steinberg (1983) and Knobloch (1986), is that of vanishing concentration flux 
( W / a z )  + (k,/T,) (aT/az) at z = 0, d .  
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2.1.3. Heat conduction state and linearized equations 
The condition for stationary heat conduction without convective motion - u = 0 

and vanishing time derivatives - gives for (2.2a)-(2.2d) together with (2 .3 )  and (2.4) 
the solutions for the pure heat conductive state 

T,(z) = T,+AT(l-Z/d) ,  ( 2 . 5 ~ )  

(2.5b) 

ap,/aZ = -qpo[ i  - ( ~ A T - ~ A N )  ( 1  - + ) I .  ( 2 . 5 ~ )  

Here AN is not given by the boundary condition as it would be in the thermohaline 
problem (Nield 1967), but through the Soret effect by the applied temperature 
difference. 

Inserting p ( r ,  t )  =p,(z)+ p'(r, t ) ,  T(r ,  t )  = T, ( z )  + T'(r, t )  and N(r ,  t )  = N,(z) +N'(r, t )  
into (2.2a)-(2.2d) eventually leads to the equations for the deviations from the heat 
conduction state. Before writing down, dimensionless units are introduced. Lengths 
are scaled in units of d and times in units of d2 /K ,  so u = ( K / d )  u. For the deviations 
of the temperature and the concentration field the scaling T = (AT/Rpo')8 and 
iV = -(kTAT/T,RPor)c has been chosen. The system is characterized by four 
dimensionless numbers. The Lewis number L and the separation ratio Yare defined 
as usual: 

L = D/K,  = p k T / U q .  ( 2 . 6 ~ )  

It is useful to introduce instead of the bulk Rayleigh number Rb = ( a q d 3 / ~ v )  AT a 
different Rayleigh number Rpor where the term d3 is replaced by Kd, and instead of 
the Prandtl number P = V / K  an effective Prandtl number Ppor is more natural: 

N,(z) = No + AN( 1 - z / d )  with AN = - (k , /T , )  AT, 

Rpor = (agdK/Kv) AT, Ppor = E(d2/K) P .  (2.6b) 

Together with (2.1) this yields Ppo, = P ( 1 5 0 ( 1 - ~ ) ~ / ~ ~ )  (d/a)2. (For P = 10, E = 0.5 
and d = 10a one gets Ppor = 150000, and in most cases the left-hand side of (2.7d) can 
be neglected.) The linearized equations are then 

v * u  = 0,  

aept = R P O ~ ~ ,  + vze, 
&/at = RP0'u,+L(V2c-V28), 

with the boundary conditions 

( 2 . 7 ~ )  

(2.7b) 

( 2 . 7 ~ )  

(2.7d) 

To get rid of the pressure term, twice the curl has been applied to the Navier-Stokes 
equation. Because at the convection onset only two-dimensional rolls appear (no y -  
dependence, see Chandrasekhar 1961 ; Gershuni & Zhukhovitskii 1976), it is sufficient 
to consider the equation for u,. Nonlinear terms in u, 8 and c have been dropped, 
because they do not influence the linear convection onset. 
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2.2.  Narrow cell 
2.2.1. Hydrodynamic equations and heat conduction state 

A box of infinite length in one horizontal dimension (x) with height d (z-direction) 
and width b (y-direction) is considered (see figure 2 ) .  The governing fluid equations 
are again (2.2a)-(2.2 c )  together with the Navier-Stokes equation (Gershuni 6 
Zhukhovitskii 1976) : 

- + ( u . V ) v  av = - - v p + v v 2 u + - g .  1 P 
at P O  P o  

Again the Boussinesq approximation, which facilitates the equations, is used here, 
although its applicability is questionable for really narrow cells leading to large 
temperature differences, The material parameters are the same as above, except for 
K, which is the thermal diffusivity of the fluid. The state equation for p is given by 
(2 .3) .  The boundary conditions are rigid, perfectly heat conducting and impermeable 
at  top and bottom and rigid, adiabatic (temperature isolating) and impermeable on 
the sidewalls : 

I a% - W kTaT 
V,  =%- 0 =-+-- at z = O,d, 

a Z  a Z  

T = %+AT at z = 0, 
T = q  a t z = d ,  

( 2 . 1 0 ~ )  

(2.10 b )  

The sidewalls have been chosen to be adiabatic, because only in this limit for y+co 
do the equations degenerate to those of the porous medium (see below). In the other 
extreme case of perfectly heat conducting sidewalls the behaviour is completely 
different (see Frick & Clever (1980) for the simple fluid case). 

The heat conduction state is again given by ( 2 . 5 a ) - ( 2 . 5 ~ ) .  

2.2.2. Elimination of the y-dependence and linearized equations 

Inserting again p ( r ,  t )  = p c ( z )  + p ' ( r ,  t ) ,  T(r ,  t )  = T,(z) + T'(r, t )  and N(r ,  t )  = Nc(z)  + 
N'(r,t) into (2.2a)-(2.2c) and (2 .9)  yields for the deviations from the conduction 
state : 

v.0 = 0, (2.11 a) 

AT 
(2.11 b )  

a r  
at 

- + ( u . V ) T  =-Vv,+KV2T', d 

-+(u .V)N'  
iw 
at d 

(2.11c) 

(2.11 d )  
av 1 -+ ( v -  V )  u = -- V6p + vV2u+g(czT -pi") e,. 

For convection cells which are not too wide, rigid sidewalls lead to a parabolic 
Poiseuille profile between the lateral boundaries (see e.g. Wooding 1960; Batchelor 
1967; Hartline & Lister 1977) :t 

at Po 

t For a simple fluid, Frick & Clever (1980) found the differences of the critical values between 
two- and three-dimensional flow to be a maximum of 1 % for y x 0.5. The differences go to zero 
very fast for larger and smaller y .  
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FIQURE 2. The narrow convection channel has the height d, the width b and is of infinite length in 
the z-direction. All boundaries are rigid for the velocity field and impermeable to mam fluxes. The 
sidewalls are adiabatic (isolating) for the temperature field, the upper and lower plates are perfectly 
heat conductors. The temperature a t  the top plate is T, and at  the bottom plate %+AT with 
AT > 0. 

vz,z(x,Y>Gt) = q! , , (X,Z>t)f(Y),  vy = o, \  
with f ( Y )  = (6/b2) (b-Y)Y. 1 (2.12a) 

To fulfil the rest of condition (2.10b), the y-dependence of T' and" is also separated 
out : 

(2.12b) 
T(x ,  y, 2,  t)  = p ( x ,  2 ,  t) g(y), "(x, y, 2 ,  t )  = "(x, 2, t )  h(y), 

with - _ - _  - - O a t y = O , b .  ag ah 
a Y  a Y  

The y-dependence can be eliminated from (2.11 a)-(Z.lld) by inserting the 
expressions for 0,  T and" and averaging the resulting equations over the cell width. 
The scaling is chosen such that 

In  dimensionless form this yields for the linearized equations valid near the 

(2 .13~)  convection onset : v-u = 0, 

(2.13b) - ae = RHSuz + V20, 

- = RH%, + L(V2c - V'O), 

at 

ac 
at 

(2 .13~)  

with the boundary conditions 

(2.13 d )  

(2.14) 

Again the pressure has been eliminated and the scaling is the same as in 82.1.3 with 
Rpor replaced by RHS and P,,, by PHs: 

(2.15a) 
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with KHS = $&2. (2.15b) 

The effective permeability KHS replaces K from the porous medium (see Hartline & 
Lister (1977) for the case of a simple fluid). 

2.3. Analogy between porous medium and narrow cell 

For the limit of infinite effective Prandtl numbers (K+O and y+co), (2.7d) and 
(2 .134  both reduce to 

(2.16) 

(This is the case only for adiabatic sidewalls which facilitate the calculation and lead 
to the form of (2.13d).) 

For the porous medium, this condition is usually fulfilled, whereas in (2.13d) at 
least the term (PIP,,) V4u, can, in general, not be neglected. For P = 10 and d = 20b 
one has P,, = 48000, which probably is a good approximation to P H s + ~ ,  but the 
term PIPH, = 4800 will still influence the equation. For d = 2b one gets PHs = 480 
and (2.16) is not appropriate at all in this case, although (2.13a)-(2.13d) give the 
correct results. 

For the case of a simple fluid there was some confusion in the literature concerning 
this analogy. The term with V4u, has been neglected from the first by Hartline & 
Lister (1977), which seems misleading from a theoretical point of view. Although 
they consider convection experiments in cells with y = 20 and y = 40, this term still 
has an influence (see discussion in $4.2 below). It will be shown later, how far the 
onset values differ for different values of y = d/b and how good the porous medium 
can be modelled by a narrow cell. 

3. Method of solution 
Two easily programmable methods have been applied with great success to the 

bulk binary mixtures: the construction of the exact solutions (Knobloch & Moore 
1988; Cross & Kim 1988), which consists of a sum of harmonic functions, and a 
Runge-Kutta integration scheme (Legros et al. 1975; Chock & Li 1975; Schopf & 
Zimmermann 1989). It turns out that for the narrow cell the first method is most 
appropriate and will be used here, while the second one is much slower and converges 
only over a smaller range of parameters. The Runge-Kutta integration is used to test 
the results and there are no differences inside the converging regime. For the porous 
medium it is just the opposite. Therefore both methods are described below. 

3.1. Exact solutions for the narrow cell 
At the convection onset a, system of parallel rolls appear with the wavevector k 
pointing into the x-direction: k = ke,. One solution is 

Inserting this ansatz into (2.13b)-(2.134 yields: 

cr+Lr2 -Lra -RHS 

u+r2 - R H S  ) (%)=o, (3.2) 
k2 - [ ( g / P H S )  + 11 r2 + (P/PHs) r4 
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with r2 = k2-q2. The solvability condition det( ...) = 0 leads to a fourth-order 
characteristic equation for the rt : 

(3 .3)  (u +Lr;) (u + r i )  (a +PHs + Pr!) rt -RHSPHs k2( u +Lri + Y( u + r: + Lr:)) = 0, 

which for a given k determines the 8q,. At the convection onset the solution is 
symmetric in z-direction (see Chandrasekhar 1961 for the case of a simple fluid), so 
for the z-dependent part we have 

with 6 = 1, 
With the time dependence u = s+iw of (3.1), the solutions are neutrally stable for 

s = 0. For w = 0 a stationary roll pattern is formed and for w 4 0 one has a Hopf 
bifurcation. 

Now the A, have to be chosen such, that the boundary conditions (2.14) are 
fulfilled. (The boundaries are shifted from z = 0 , l  to z = T i  which is more convenient 
here.) This leads again to a characteristic equation which for given k determines the 
corresponding RHS and w .  The convection onset is provided by the lowest RHs on this 
neutral curve, so at  last one ends up with the critical values RFS, k, and w,. 

= l+r;/(u+Lr:), uj0 = (u+r: ) /RHs and q; = k2-r,2. 

3.2. Runge-Kutta integration for the porous medium 
The x-  and t-dependences of (2.7b)-(2.7d) are separated by the ansatz 

leading to 

( 3 . 6 ~ )  

8" = (u+ kz) e-RPorU, (3.6b) 

( 3 . 6 ~ )  

with f' := Cl,flClz, f' := a2flaz2 and q ( z )  := c ( z ) - e ( z ) .  With 6 new functions y1 = 8,  
yz = q', y3 = u, y4 = u', y6 = 8' and ya = q,  (3.6a)-(3.6c) can be rewritten as 
a 6-dimensional system of first-order differential equations : 

Y; = Y5, (3 .7a)  

(3.7b) 

Y; = Y4, (3.7c) 

( 3 . 7 4  

(3.7 e )  

(3.7.f 1 
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with the boundary conditions following from (2.8) 

y1 = yz = y3 = 0 at z = 0 , l .  (3.8) 

With y being the 6-dimensional vector (yl(z), yz(z), ..., y,(z)), e, the six 6-dimensional 
Cartesian unit vectors and #, the 6 linear independent solutions of (3.7a)-(3.7 f )  with 
d,(O) = e,, the general solution is 

The boundary conditions (3.8) at z = 0 lead to a1 = az = a3 = 0 so that (3.9) is 
reduced to 

6 

Y ( 4  = c a, #&). 
6-4 

Runge-Kutta integrations of (3.7a)-(3.7 f )  with the boundary conditions e,, e,, e6 
at z = 0 gives #4( l),  #5( l),  #6( 1) and the resulting solution y(  1) = x:-4 a,& 1). The 3 
a, have to be chosen such that the conditions (3.8) are fulfilled at z = 1. This is a set 
of linear equations for the a, : 

4;(1) 4 m  

4W) 4" 431) 
(3.10) 

with the solvability condition det( ...) = 0. The rest of the procedure is the same as 
for the exact solutions. With cr = s + iw, the neutrally stable solution is obtained from 
the condition s = 0. The system (3 .7~-f )  is solved separately for the stationary 
bifurcation (w = 0) and the Hopf bifurcation (w =k 0). Again for a given k the 
condition (3.10) yields the corresponding Rpor and w and then the critical values Rr, 
k, and w, can be calculated. 

4. Results 
There are only limited possibilities for testing the numerical calculations. For 

Y = 0 the case of a simple fluid has to be recovered, which for the porous medium 
gives RgOr = 4n2, k, = R and for the narrow cell is reported by Frick & Clever (1980). 
These values are in full agreement, and for small y the results for the narrow cell 
tend to those for bulk mixtures as expected. 

With the tools from $3  the critical onset values can now be calculated for different 
parameter combinations. I have chosen L = 0.03, P = 0.6, which is appropriate for a 
3He-4He mixture consisting typically of 3 % 3He (Lee et al. 1983; Rehberg & Ahlers 
1985; Sullivan & Ahlers 1988) and L = 0.01, P = 10 for a water-ethanol mixture of 
typical 0 .  .. 20% alcohol (Walden et al. 1985; Moses & Steinberg 1986; Bensimon 
et al. 1990; Kolodner et al. 1990; Schopf & Rehberg 1992). 

4.1. Overall behuvwur for the porous medium 
For d / a  > 5 one gets for the water-alcohol mixture Ppor > 80000 and for the 
3He-4He mixture Ppor > 5000. It turns out that for Pp,, > 5000 the PP,,+co limit is 
already attained, so only this limit is considered here. 

The results are qualitatively the same as for bulk binary mixtures with realistic 
boundary conditions (Legros et aE. 1975; Chock & Li 1975; Knobloch & Moore 1988; 
Cross & Kim 1988) and this is true also for the narrow cell (see below). Figure 3 shows 
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FIGURE 3. Stability diagram for a mixture with L = 0.03 in a porous medium in the limit P,,, -+w. 
The solid and dashed lines represent the stationary and the oscillatory bifurcation, respectively. 
The curves for the critical Rayleigh number R Y  intersect at slightly negative Y at the 
codimension-2 point. The inset shows the dependence of the critical wavenumber ky on Y, which 
becomes zero for Y > 0.04. 

the stability diagram for the fluid with L = 0.03. Note the scaling for the Rayleigh 
number which gives R, = 47c2 for Y = 0. The critical Rayleigh numbers RZtat (solid 
line) and RF (dashed line) are equal at the codimension-2 point (CTP) at 
Y=-2.7x Some details of the CTP are discussed in $4.3. For the Hopf 
bifurcation, the critical wavenumber k, stays nearly constant over the whole Y- 
regime, while for positive Y it rapidly decreases and becomes zero for Y > Ym w 0.04 
(see inset of figure 3). This feature of zero wavenumber (and therefore infinite 
wavelength) has been discussed in detail for bulk mixtures by Nield (1967) and 
Knobloch & Moore (1988). Their method for calculating the value of Ym analytically 
yields, after some tedious algebra, 

L 
R,  = 12- 

Y 
for Y > Ym. 

L 
Ym =- 40-L’ 

5 1  

A different technique yielding Ym is described by Knobloch (1989). The curve for the 
critical frequency o, is not given here, because it is indistinguishable from that shown 
in figure 4 c  below for L = 0.01. 

4.2. Comparison of porous medium with narrow cell 
For the narrow cell, the accessible y-range is limited for numerical reasons, and the 
method described above worked only up to y = 16. The results are shown in figure 
4 for the mixture with L = 0.01, P = 10 in the porous medium (solid lines), and in the 
narrow cell for y = 16 (dashed lines) and y = 5 (dashed-dotted lines). 

Figure 4 ( a )  shows the critical values for the stationary bifurcation. The approach 
of the porous medium case for increasing y can be seen clearly. The differences in R, 
between the porous medium and the narrow channel with y = 16 are 1.80 4.5 YO for 
Y = 0 and 0.28 A 11 YO for Y = 0.05. The situation for the Hopf bifurcation is shown 
in figure 4 ( b ) ,  where the differences in R, t o  the porous medium are about 22 YO for 
y = 5 and 4.5% for y = 16. The wavenumbers differ by about 3.5% (y = 5 )  and 
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FIQURE 4. Comparison of the behaviour of a mixture with L = 0.01 and P = 10 in a porous medium 
(-) and in a narrow cell with y = 16 (----) and y = 5 (-.-.-). In  (a) and (b) the critical Rayleigh 
numbers R, are plotted for the stationary and for the oscillatory bifurcation, respectively. The 
insets show the corresponding wavenumbers k,. I n  (c) the critical frequency o, for the Hopf 
bifurcation is shown. 

1.6% (y  = 16). Finally the critical frequency w, is shown in figure 4(c). Here the 
differences are about 3.6% for y = 5 and 1.6% for y = 16. The absolute values are 
nearly equal for Y +. 0. 

To obtain a better feeling for the tendency to the case of the porous medium, in 
figure 5 the critical values for the narrow cell are given for Y = -0.4 as a function 
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FIQURE 5. Critical values in a narrow cell as a function of y for Y = -0.4. The behaviour is 
analogous for other values of Y. In (a) the critical Rayleigh number R,AS for a mixture with L = 0.01 
and P = 10 (-) is plotted which tends very slowly to the valueRy of the porous medium (----). 
The inset shows RfIS rescaled to the value defined for bulk mixtures R:, which tends to the correct 
value for y+O. In  (b) the critical frequency OJ? is shown for L = 0.01, P = 10 (-) and for 
L = 0.03, P = 0.6 (----). The dependence is stronger for the lower Prandtl number. The inset 
shows the respective wavenumbers k,As which have a maximum inside the y-range. 

of y. Figure 5 (a) shows RFS for L = 0.01, P = 10 up to the maximal y-value of 16, the 
dashed line represents the corresponding R r  = 66.42. The approach to this value is 
obvious but very slow with increasing y. To analyse R f S  for small y ,  it has to be 
rescaled to the value RE defined for bulk mixtures. This is shown in the inset, where 
for y = 0 the correct value RE = 2819 is reached. An interesting behaviour is found 
for the frequency and the wavenumber plotted in figure 5 ( b )  for L = 0.01, P = 10 
(solid lines) and L = 0.03, P = 0.6 (dashed lines). For the small Prandtl number case 
w F s  depends strongly on y ,  while for the other fluid this dependence is weaker, but 
present. For y+O  the values are identical to those for bulk mixtures. IcFs f i s t  
increases with decreasing y up to  a maximum and then decreases again to the bulk 
mixture value. This is in contrast to the free, pervious case, where both kFS and w F s  
decrease monotonically from the values for the porous medium to the bulk values. 
The behaviour for R f s  and k:s is the same for the stationary bifurcation. 

The question for which y a narrow cell is a good approximation to the porous 
medium depends on the individual problem. Since the characteristics are quali- 
tatively the same for different y ,  a cell with y = 10.. .20 is sufficient if one is satisfied 
with an error up to 10%. On the other hand one would need really large y (up to 
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FIQURE 6. The difference between the critical Rayleigh number R:S for the narrow cell and the 
corresponding R Y  for the porous medium is shown as a function of 1 f y' for a fluid with L = 0.01 
and P = 10 for Y = -0.4. For free, pervious boundaries (-----) this gives a straight line, while this 
is apparently not the case for rigid, impervious boundaries (-). 

50 . . . 100) to exactly model a porous medium (see figure 5a).  For the case of a simple 
fluid it was speculated by Frick & Clever (1980) that the analogy to the porous 
medium has already been attained for y = 20, which is true only up to 1 or 2 YO error. 
To get the exact results, however, the resolution of their figure 3 is too coarse for this 
delicate question. 

An interesting open question is how for increasing y the limit of the porous medium 
is reached. For free, pervious boundaries it can be shown analytically, that 
(RFS-RF) cc l/y2. In figure 6 this difference is plotted against l /y2 for the free, 
pervious case (dashed line) and for rigid, impervious boundaries (solid line) for a fluid 
with L = 0.01, P = 10 and Y = -0.4. Whereas the proportionality to l/y2 for the 
unrealistic boundary conditions is obvious, this seems not to be the case for rigid 
ones. Although in the interesting regime for large y the numerics do not work, the 
solid line points more at another dependency. 

4.3. Codimension-2 point 
For slightly negative Y, the critical Rayleigh numbers for the stationary and for the 
oscillatory bifurcation have the same value RcT. At  this CTP the situation is also 
quite analogous to that in bulk mixtures, which has been discussed in detail by 
Knobloch & Moore (1988) and Cross & Kim (1988). In our case the CTP is shifted still 
more against Y = 0. For L = 0.03, P = 0.6 one has YcT = -5.43 x lod4 for the bulk 
mixture and YCT = -3.36 x for y = 16 and 
YcT = -2.7 x for the porous medium. The wavenumbers at the CTP are 
different on the two bifurcation branches with ks,tt being slightly larger ( w  1.5 Yo) 
than kr$ and the difference is smaller than in bulk mixtures. As a consequence the 
critical frequency wCT is not zero, but has a very small value ( NN 0.04) which is also 
smaller than in bulk mixtures. 

4.4. Comparison with experiments 
In  a recent experiment (Schopf & Rehberg 1992) a water-ethanol mixture with 
L = 0.009, P = 10 and Y = -0.13 in a cell with y = 2 lead to a critical temperature 
difference of ATc w 10K and a critical frequency of uc, exp x 0.2 s-l. This gives for the 
bulk Rayleigh number R!7,xp w 4800 and for the Rayleigh number according to 

for y = 5 ,  YcT = -3.02 x 
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( 2 . 1 5 ~ )  RFSexp x 100, while the linear stability analysis yield RE,theo = 1974 and 
= 92. The theoretical values for o, for this experiment are WE,  thee = 0.180 s-l 

and @:heo = 0.186 s-'. For the rescaling of the experimental data a mean thermal 
conductivity K has been used to take into account the heat conduction by the 
sidewalls, because in this experiment the lateral boundaries are not really adiabatic. 
Thus one cannot expect to get the exact values, but it should be evident, that the 
critical Rayleigh number for the bulk mixture is completely wrong for the case of the 
narrow cell, while 

The comparison with an experiment of an 3He-4He mixture in a porous medium 
(Rehberg k Ahlers 1985) is also not simple for other reasons. Here the theory is the 
correct one, but the properties for this fluid are not known very well. They can be 
estimated from Brand & Steinberg (1983) yielding, together with the critical values 
taken from Rehberg & Ahlers (1985), for the bulk Rayleigh number RE, exp x 230000, 
for Rg&, x 40.. .50 and for the frequency w,,, exp % 2. Obviously one cannot compare 
this experiment with calculations for the bulk mixture, while a comparison with the 
values for the porous medium indicate a Y of about -0.02. .. -0.05 which indeed 
was estimated by Rehberg 6 Ahlers (1985). For a more precise analysis of this 
experiment better data for the material parameters are needed. 

is still a good approximation (see footnote on page 268). 

5. Conclusion 
In the present paper the linear stability analysis is given for the convective 

instability of a binary fluid mixture in a porous medium and in a narrow box subject 
to an external temperature gradient. In both cases realistic (rigid and impervious) 
boundary conditions are considered for the first time. It has proven useful to 
introduce new Rayleigh numbers which take into account the features of the special 
geometries. The linearized equations for both cases are very similar degenerating to 
the same set in the limit of infinite effective Prandtl numbers (small K / d 2  and large 
y2)  for adiabatic sidewalls in the narrow cell geometry. The parameter values have 
been chosen to be of direct relevance to experiments in 3He-4He and water-ethanol 
mixtures. 

Whereas the results are analogous to those of bulk mixtures, there are some quali- 
tative differences compared to the case of idealized boundary conditions. Thus the 
impermeability of the top and bottom plate gives rise to a vanishing wavenumbers 
on the stationary branch for large enough positive Y, in contrast to the idealized case 
where k, = constant (depending only on y in the narrow cell). At the codimension- 
2 point, where the oscillatory and the stationary instability meet, the wavenumber 
for both branches are different, leading to a non-vanishing Hopf frequency. In  the 
idealized case the wavenumbers are equal and the frequency is zero. The codimension- 
2 point itself occurs for !P still nearer to zero than in bulk mixtures, so a detailed 
experimental investigation of the vicinity of this point seems out of reach for liquids. 

The analysis of experiments showed that for convection in narrow cells and in a 
porous medium one cannot compare the data with the results for bulk mixtures, 
while there is reasonable agreement with the calculations in this paper. For further 
comparisons more detailed experimental investigations are required. 

It is a pleasure to thank I. Rehberg, who gave the motivation to this work, and 
L. Kramer for fruitful discussions and stimulating criticism. 
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